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A general method is presented for obtaining the electrostatic contributions to the first-, 
second- , and third-order Brugger-type elastic constants of metallic and ionic structures . The 
elec trostatic energy per unit initial volume of a homogeneously deformed lattice is determined 
by the Ewald-Fuchs method . General equations for the Brugger elastic constants are found 
by taking Lagrangian strain derivatives of this energy expression. Internal-strain contributions, 
which occur for nonprimitive structures, have been included. Results are tabulated for six 
metallic and five ionic structures. 

I. INTRODUCTION 

Electrostatic contributions can be an important 
part of any model calculation of elastic constants. 
Since these contributions are constant for a given 
structure, it seems appropriate to calculate and 
tabulate them for various ionic and metallic struc
tures . General expressions, which are valid for 
any crystalline structure, are presented for the 
electrostatic contribution to the Brugger-type 
elastic constants. Also given are general ex
pressions for electrostatic internal-strain deriva
tives, from which the internal-strain contribu
tion to the Brugger- type elastic constants can be 
obtained. SpeCific results are tabulated for six 
metallic and five ionic structures. Whereas some 

of these tabulated results have been reported 
elsewhere, this paper serves to increase the ac
curacy of earlier work, as well as unify all re
sults. 

For metallic structures, the first important 
results were those of Fuchs. 1,2 He calculated the 
two Fuchs-type second-order elastic shear con
stants for bcc and fcc metals. By extending 
Fuchs's method, Cous ins 3 obtained the second
and third-order shear constants for bcc and fcc 
metals. More recently, Cousins4,5 calculated the 
first-, second-, and third-order elastic con
stants of hcp metals for various c/ a ratios. In
stead of calculating the Fuchs- type elastic con
stants, which are linear combinations of the Brug
ger elastic constants, Suzuki et al. 6 directly cal-
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culated the electrostatic contributions to the 
second- and third-order Brugger elastic constants 
of bcc metals. For ionic structures, Ghate 7 has 
calculated the electrostatic contributions to the 
third-order Brugger elastic constants for NaCl
and CsCl-type structures, and Blackman8 has 
calculated the second-order electrostatic contri
butions, including internal strains, for the zinc
blende structure. In addition to a recalculation 
of the results cited above, the new results tabu
lated in this paper are the first-, second-, and 
third-order elastic constants of the wurtzite, 
WC-type, diamond, simple cubic, and simple 
hexagonal structures; the third-order elastic 
constants of zinc blende; and the internal-strain 
derivatives, through third order, for the zinc
blende, diamond, hcp, WC-type, and wurtzite 
structures. 

The Ewald- Fuchs method for determining the 
electrostatic energy will be discussed in Sec. n. 
General expressions9 for the Brugger-type elas
tic constants and tabular results will be presented 
in Sec. ill. An explanation of internal strains and 
their contributions to the elastic constants will 
follow in Sec. IV. 

II. EWALD-FUCHS METHOD 

The electrostatic energy, per unit initial vol
ume, of a homogeneously deformed lattice of ions 
is 

(1 ) 

no is the volume per ion of the undeformed state, 
e the electronic charge, and s the number of ions 
per unit cell. The summations over 1 and v, J1. 
(v, /J. = 0,1, ••. ,s - 1) are sums over the Bravais 
lattice and unit cell, respectively. The prime on 
the summation means the l= 0, v = /J. term is ex
cluded from the sum. R(~!) is defined as 

where R(l) is a Bravais lattice vector and T(V) is 
the basis vector of the vth ion in the unit cell. 
Throughout this paper, primed quantities, such 
as R'(~~), will refer to the deformed state. 11 v 

is the sign of the ionic charge, i. e ., the charge 
of the vth ion is lJvZe. The parameter A is in
troduced in Eq. (1) to make the summand di
mensionless. Different choices for the value of 
A will be discussed later. 

For a given crystal structure the summation in 
Eq. (1) can be readily performed, but the con
vergence is extremely slow. A useful technique 
for more rapid convergence is the method orig
inally devised by Ewald10 for ionic lattices and 
extended to metals by Fuchs. 11 The follOwing is 

a brief description of the Ewald-Fuchs method. 
Using the definition of the r function, one has 

By splitting the integral into two parts, one from ° to rru and the other from rru to 00, it follows 
that 

+J" dtt-1/2 [F exp(-rrlft~~~~)12t) -OVI'] , 

o 

where 
(4) 

(5) 

The 9-function transformation for a (Bravais) de
formed lattice is 

,6 exp [- rrlft'(ll+xI 2y2] 
I 

y-3 _, _ (_ IG'(h)1 2 
) 

= --, 6 exp[- iG (h). x] exp 4 2 , 
s~ h ~ 

(6 ) 

where the G'(h) vectors form the reciprocallat
tice of the deformed real lattice and n~ is the 
volume per ion of the deformed state. Using this 
transformation and defining a structure factor as 

S'(G') = (1/ s) 6vlJ v e-1G"" (V) , (7) 

it can be shown that 
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- 2u1/Z (112) + u-1 f (11)2 DJ, (8) 

where 

(112) = (l/S)6 v lie, (11) = (1 / S)6vll ,v ', 

and 

D= t dtt-2 o . 

It should be noted that, owing to the integral D, 
U~i diverges unless the average charge per unit 
cell (11) is zero. For ionic structures this is the 
case, and U~i by itself represents the electro
static energy density. For metallic structures 
(11)*0, and U~i is' divergent. However, the elec
trostatic energy density of metals consists not 


